Шифрование это в информатике

Шифрование это в информатике

Что такое шифрование?

Шифрование используется человечеством с того самого момента, как появилась первая секретная информация, т. е. такая, доступ к которой должен быть ограничен. Это было очень давно — так, один из самых известных методов шифрования носит имя Цезаря, который если и не сам его изобрел, то активно им пользовался (см. врезку «Система шифрования Цезаря»).

Криптография обеспечивает сокрытие смысла сообщения и раскрытие его расшифровкой с помощью специальных алгоритмов и ключей. Ключ понимается нами как конкретное секретное состояние параметров алгоритмов шифрования и дешифрования. Знание ключа дает возможность прочтения секретного сообщения. Впрочем, как вы увидите ниже, далеко не всегда незнание ключа гарантирует то, что сообщение не сможет прочесть посторонний человек.

Процесс вскрытия шифра без знания ключа называется криптоанализом. Время, необходимое для взлома шифра, определяется его криптостойкостью. Чем оно больше, тем «сильнее» алгоритм шифрования. Еще лучше, если изначально вообще нельзя выяснить, достижим ли результат взлома.

Основные современные методы шифрования

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

  • Алгоритмы замены или подстановки — символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.
  • Алгоритмы перестановки — символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.
  • Алгоритмы гаммирования — символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов "имя пользователя.pwl", в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUp-доступа в Интернет и т.д.).

Когда пользователь вводит свой пароль при входе в Windows 95, из него по алгоритму шифрования RC4 генерируется гамма (всегда одна и та же), применяемая для шифрования сетевых паролей. Простота подбора пароля обусловливается в данном случае тем, что Windows всегда предпочитает одну и ту же гамму.

  • Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

Симметричные и асимметричные криптосистемы

Прежде чем перейти к отдельным алгоритмам, рассмотрим вкратце концепцию симметричных и асимметричных криптосистем. Сгенерировать секретный ключ и зашифровать им сообщение — это еще полдела. А вот как переслать такой ключ тому, кто должен с его помощью расшифровать исходное сообщение? Передача шифрующего ключа считается одной из основных проблем криптографии.

Оставаясь в рамках симметричной системы (так она названа оттого, что для шифрования и дешифрования подходит один и тот же ключ), необходимо иметь надежный канал связи для передачи секретного ключа. Но такой канал не всегда бывает доступен, и потому американские математики Диффи, Хеллман и Меркле разработали в 1976 г. концепцию открытого ключа и асимметричного шифрования. В таких криптосистемах общедоступным является только ключ для процесса шифрования, а процедура дешифрования известна лишь обладателю секретного ключа.

Например, когда я хочу, чтобы мне выслали сообщение, то генерирую открытый и секретный ключи. Открытый посылаю вам, вы шифруете им сообщение и отправляете мне. Дешифровать сообщение могу только я, так как секретный ключ я никому не передавал. Конечно, оба ключа связаны особым образом (в каждой криптосистеме по-разному), и распространение открытого ключа не разрушает криптостойкость системы.

В асимметричных системах должно удовлетворяться следующее требование: нет такого алгоритма (или он пока неизвестен), который бы из криптотекста и открытого ключа выводил исходный текст. Пример такой системы — широко известная криптосистема RSA.

Алгоритм RSA

Алгоритм RSA (по первым буквам фамилий его создателей Rivest-Shamir-Adleman) основан на свойствах простых чисел (причем очень больших). Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для начала выберем два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей. Например, Unix-программа ssh-keygen по умолчанию генерирует ключи длиной 1024 бита).

Определим параметр n как результат перемножения p и q. Выберем большое случайное число и назовем его d, причем оно должно быть взаимно простым с результатом умножения (p -1)*(q -1).

Отыщем такое число e, для которого верно соотношение

(e*d) mod ((p -1)*(q -1)) = 1

(mod — остаток от деления, т. е. если e, умноженное на d, поделить на ((p -1)*(q -1)), то в остатке получим 1).

Открытым ключом является пара чисел e и n, а закрытым — d и n.

При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом мы совершаем операцию

В результате получается последовательность C(i), которая и составит криптотекст. Декодирование информации происходит по формуле

M(i) = (C(i) d ) mod n.

Как видите, расшифровка предполагает знание секретного ключа.

Давайте попробуем на маленьких числах.

Установим p=3, q=7. Тогда n=p*q=21. Выбираем d как 5. Из формулы (e*5) mod 12=1 вычисляем e=17. Открытый ключ 17, 21, секретный — 5, 21.

Зашифруем последовательность «12345»:

C(1)= 1 17 mod 21= 1
C(2)= 2 17 mod 21 =11
C(3)= 3 17 mod 21= 12
C(4)= 4 17 mod 21= 16
C(5)= 5 17 mod 21= 17

Криптотекст — 1 11 12 16 17.

M(1)= 1 5 mod 21= 1
M(2)= 11 5 mod 21= 2
M(3)= 12 5 mod 21= 3
M(4)= 16 5 mod 21= 4
M(5)= 17 5 mod 21= 5

Как видим, результат совпал.

Криптосистема RSA широко применяется в Интернете. Когда вы подсоединяетесь к защищенному серверу по протоколу SSL, устанавливаете на свой ПК сертификат WebMoney либо подключаетесь к удаленному серверу с помощью Open SSH или SecureShell, то все эти программы применяют шифрование открытым ключом с использованием идей алгоритма RSA. Действительно ли эта система так надежна?

Конкурсы по взлому RSA

С момента своего создания RSA постоянно подвергалась атакам типа Brute-force attack (атака методом грубой силы, т. е. перебором). В 1978 г. авторы алгоритма опубликовали статью, где привели строку, зашифрованную только что изобретенным ими методом. Первому, кто расшифрует сообщение, было назначено вознаграждение в размере 100 долл., но для этого требовалось разложить на два сомножителя 129-значное число. Это был первый конкурс на взлом RSA. Задачу решили только через 17 лет после публикации статьи.

Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора. Строго говоря, утверждение, что задача разложения на множители сложна и что взлом системы RSA труден, также не доказано.

Компания RSA (http://www.rsa.ru) регулярно проводит конкурсы на взлом собственных (и не только собственных) шифров. Предыдущие конкурсы выиграла организация Distributed.net (http://www.distributed.net/), являющаяся Интернет-сообществом добровольцев. Участники Distributed.net загружают к себе на ПК небольшую программу-клиент, которая подсоединяется к центральному серверу и получает кусочек данных для вычислений. Затем все данные загружаются на центральный сервер, и клиент получает следующий блок исходной информации. И так происходит до тех пор, пока все комбинации не будут перебраны. Пользователи, участники системы, объединяются в команды, а на сайте ведется рейтинг как команд, так и стран.

Читайте также:  Как узнать активированный ключ в стиме

Например, участвующей в конкурсе по взлому RC5-64 (блочный шифр компании RSA, использующий ключ длиной 64 бита) организации Distributed.net удалось осуществить взлом через пять лет (1757 дней) работы. За это время в проекте участвовали 327 856 пользователей и было перебрано 15 268 315 356 922 380 288 вариантов ключа. Выяснилось, что была (не без юмора) зашифрована фраза «some things are better left unread» («некоторые вещи лучше оставлять непрочтенными»). Общие рекомендации по шифру RC5-64 таковы: алгоритм достаточно стоек для повседневных нужд, но шифровать им данные, остающиеся секретными на протяжении более пяти лет, не рекомендуется».

Сейчас организация Distributed.net взламывает шифр RC5-72 (ключ 72 бита длиной). Что интересно, добавление всего 8 бит в длину ключа привело к тому, что за 172 дня существования очередного конкурса по взлому было перебрано всего лишь 0,023% от всех ключей. Что ж, подождем.

Шифрование в Windows

Большинство из нас постоянно используют шифрование, хотя и не всегда знают об этом. Если у вас установлена операционная система Microsoft, то знайте, что Windows хранит о вас (как минимум) следующую секретную информацию:

  • пароли для доступа к сетевым ресурсам (домен, принтер, машины в сети и т.д.);
  • пароли для доступа в Интернет с помощью DialUp;
  • кэш паролей (в браузере есть такая функция — кэшировать пароли, и Windows сохраняет все когда-либо вводимые вами в Интернете пароли);
  • сертификаты для доступа к сетевым ресурсам и зашифрованным данным на самой машине.

Эти данные хранятся либо в pwl-файле (в Windows 95), либо в SAM-файле (в Windows NT/2000/ XP). Это файл Реестра Windows, и потому операционная система никому не даст к нему доступа даже на чтение. Злоумышленник может скопировать такие файлы, только загрузившись в другую ОС или с дискеты. Утилит для их взлома достаточно много, самые современные из них способны подобрать ключ за несколько часов.

Это является одной из причин, по которым в любой курс по обеспечению безопасности предприятия введены лекции о неинформационных средствах, а именно об охране, пропускном режиме, ограничении доступа посторонних лиц к компьютерам и т. д. Например, ограничения NTFS (файловая система Windows NT/2000) на доступ к данным не действуют в другой ОС. Если же злоумышленник сможет загрузить c дискеты MS-DOS, то любая информация из разделов NTFS может быть считана при наличии соответствующего драйвера, а такие драйверы уже существуют и для MS-DOS, и для Unix.

В операционную систему Windows 2000 встроена система шифрования EFS (Encrypting File System), позволяющая хранить некоторые блоки файловой системы NTFS в зашифрованном виде. Эта технология очень удобна, потому что работает как встроенный системный сервис. Для того чтобы зашифровать файл или каталог, нажмите на кнопку Advanced в свойствах файла или директории. В появившемся окне (рис. 1) отметьте галочкой Encrypt contents to secure data.

Рис. 1

Когда Windows спросит, применять ли установленные параметры на поддиректории и входящие файлы, ответьте «Да». При шифровании каталога EFS гарантирует, что все файлы в нем будут зашифрованы. При этом вы продолжаете работать с этими директориями так же, как и раньше. Вам вовсе не обязательно производить дешифрацию файлов, чтобы открыть их — все происходит на системном уровне прозрачно и для пользователя, и для приложений.

Программы-шифраторы

Иногда необходимо зашифровать отдельный файл, чтобы передать его кому-нибудь или послать по электронной почте и т.д. Иногда нужно просто зашифровать файл, а стандартных возможностей, предоставляемых файловой системой NTFS, недостаточно. В таких случаях можно прибегнуть к помощи специальных шифрующих программ.

Например, CryptoForge (http://www.cryptoforge.com/) позволяет зашифровать файл любым из четырех алгоритмов (Blowfish, TripleDES, Gost и даже Rijndael — см. врезку «Конкурс AES»). Встраиваясь в систему, программа добавляет в контекстное меню проводника Explorer пункт Encrypt. Нажав на него, вы получите предложение ввести пароль (рис. 2).

Рис. 2

Введенный пароль, который затем преобразуется в ключ, будет использован в качестве параметра для указанного в настройках алгоритма. Прочитать этот файл не сможет никто, кроме знающих пароль.

Цифровая подпись

Цифровая подпись — одно из самых распространенных применений шифрования. Суть цифровой подписи состоит в том, чтобы идентифицировать сообщение и гарантировать его неизменность. Сообщение (любой длины) преобразуется с помощью так называемой хэш-функции в короткое число. Обычно оно имеет размерность 128 бит. Хэш-функция однонаправлена (по числу нельзя восстановить сообщение) и однозначна (при повторном хэшировании того же сообщения получится то же число).

Теоретически существует множество сообщений, которые будут хэшированы в то же число, но на практике вероятность такого события ничтожно мала (см. врезку «Криптографические хэш-функции»).

Полученное в результате обработки хэш-функцией текста сообщения число шифруется по RSA-алгоритму на закрытом ключе пользователя и посылается адресату вместе с письмом и экземпляром открытого ключа. Адресат с помощью открытого ключа отправителя выполняет ту же хэш-функцию над пришедшим сообщением. Если оба числа равны, это означает, что сообщение подлинное, а если был изменен хотя бы один символ, то числа не совпадут.

Один из самых распространенных в России почтовых клиентов, программа The Bat!, обладает встроенными возможностями добавлять цифровые подписи к письмам (обратите внимание на пункт меню Privacy при редактировании письма). Подробнее об этой методике читайте в статье «Электронная цифровая подпись» (см. «Мир ПК», № 3/02).

Рис. 3

Криптография

Криптография — наука о принципах, средствах и методах преобразования информации для защиты ее от несанкционированного доступа и искажения. В последнее время она развивается очень и очень бурно. Это бесконечная увлекательная гонка, требующая много времени и сил: криптоаналитики взламывают алгоритмы, которые еще недавно были стандартами и повсеместно использовались. Кстати, недавно математики Дэн Голдстон (США) и Кем Илдирим (Турция) доказали первую закономерность в распределении простых чисел (до сих пор таких закономерностей не замечали). Простые числа располагаются на числовой оси некоторыми скоплениями, что несколько облегчает их поиск.

Математические исследования, ведущиеся во всем мире, постоянно приводят все к новым и новым открытиям. Как знать, может быть, мы стоим на пороге взлома алгоритма RSA или других криптосистем, основанных на нерешенных математических задачах.

Об авторе
Олег Бунин — специалист по разработке ПО для крупных Интернет-проектов, сотрудник компании «Рамблер», vbob@aha.ru.

Литература
  1. Лукашов И. В. Криптография? Железно! // Мир ПК. 2003. № 3 (http://www.osp.ru/pcworld/2003/03/100.htm).
  2. Панасенко С. П., Ракитин В.В. Аппаратные шифраторы // Мир ПК. 2002. № 8 (http://www.osp.ru/pcworld/2002/08/077.htm).
  3. Панасенко С. П. Чтобы понять язык криптографов // Мир ПК. 2002. № 5 (http://www.osp.ru/pcworld/2002/05/086.htm).
  4. Панасенко С. П. Чтобы понять язык криптографов // Мир ПК. 2002. № 6 (http://www.osp.ru/pcworld/2002/06/091.htm).
  5. Панасенко С. П. Электронная цифровая подпись // Мир ПК. 2002. № 3 (http://www.osp.ru/pcworld/2002/03/078.htm).
  6. Панасенко С. П. Защита информации в компьютерных сетях: шифрование // Мир ПК. 2002. № 2 (http://www.osp.ru/pcworld/2002/02/070.htm).
  7. Дмитриев А. Системы защиты информации // Мир ПК. 2001. № 5 (http://www.osp.ru/pcworld/2001/05/010.htm).
  8. Введение в криптографию / Под ред. В.В. Ященко. М.: МЦНМО, 2000.
  9. Носов В. А. Краткий исторический очерк развития криптографии // Материалы конференции "Московский университет и развитие криптографии в России", МГУ, 17-18 октября 2002 г.
  10. Саломаа А. Криптография с открытым ключом. М., 1996 .
  11. Циммерман Ф. PGP — кодирование с открытым ключом для всех.
Читайте также:  Телефон homtom ht3 pro

Система шифрования Цезаря

Пример алгоритма замены — система шифрования Цезаря. Этот метод основан на замене каждой буквы сообщения на другую путем смещения от исходной на фиксированное количество символов. Попробуйте расшифровать четверостишие Омара Хайяма (время выполнения — 10 минут).

РЛЗЬ ЁМЭЙЗ АВБЖУ ИЙЗАВЛУ, БЖЩЛУ ЖЩЭЗЬЖЗ ЖЮЁЩЕЗ, ЭЫЩ ЫЩАЖФО ИЙЩЫВЕЩ БЩИЗЁЖВ ЭЕШ ЖЩРЩЕЩ: ЛФ ЕМРСЮ ЪЗЕЗЭЩГ, РЮЁ РЛЗ ИЗИЩЕЗ ЮКЛУ, В ЕМРСЮ ЬМЭУ ЗЭВЖ, РЮЁ ЫЁЮКЛЮ К ДЮЁ ИЗИЩЕЗ.

Успели? Привожу «отгадку»:

Чтоб мудро жизнь прожить, знать надобно немало,
Два важных правила запомни для начала:
Ты лучше голодай, чем что попало есть,
И лучше будь один, чем вместе с кем попало.

Ключ для расшифровки: сдвигаем на семь символов (берем седьмой) влево по алфавиту. Алфавит закольцован. Регистр символов не учитывается.

Windows и пароли

Как Windows шифрует пароли?

Система берет пароль, преобразует его в верхний регистр, обрезает до 14 символов, затем делит их на две половины по 7, шифрует каждую по отдельности и так сохраняет, что несколько упрощает взлом. Кстати, когда будете придумывать пароль, имейте в виду, что комбинация длиннее 14 символов имеет мало смысла.

Конкурс AES (Advanced Encryption Standard)

В 80-х гг. в США приняли стандарт симметричного шифрования для внутреннего применения — DES ((Data Encryption Standard, подобный стандарт есть и в России). Но в 1997 г., когда стало понятно, что 56-битового ключа DES недостаточно для надежной криптосистемы, Американский институт стандартизации объявил конкурс на новый стандартный алгоритм. Из 15 вариантов был выбран лучший: бельгийский алгоритм Rijndael (его название составлено из фамилий авторов — Rijmen и Daemen, читается как «Рэйндал». Этот алгоритм уже встроен в различные криптографические средства, поставляемые на рынок). Другими финалистами конкурса стали MARS, RC6, Serpent, TwoFish. Все эти алгоритмы были признаны достаточно стойкими и успешно противостоящими всем широко известным методам криптоанализа.

Криптографические хэш-функции

Криптографические хэш-функции преобразуют входные данные любого размера в строку фиксированного размера. Для них чрезвычайно сложно найти:

  • два разных набора данных с одинаковым результатом преобразования (стойкость к коллизиям); например, количество арифметических операций, необходимых для того, чтобы найти блок данных, также имеющий краткое сообщение для хэш-функции MD5, составляет приблизительно 2 64;
  • входное значение по известному результату хэширования (необратимость); для MD5 предполагаемое количество операций, необходимых для вычисления исходного сообщения, равно 2 128.

Все мы довольно часто слышим такие слова и словосочетания, как «шифрование данных», «секретные шифры», «криптозащита», «шифрование», но далеко не все понимают, о чем конкретно идет речь. В этом посте разберемся, что из себя представляет шифрование и рассмотрим элементарные шифры с тем расчетом, чтобы даже далекие от IT люди поняли суть этого явления.

Прежде всего, разберемся в терминологии.

Шифрование – это такое преобразование исходного сообщения, которое не позволит всяким нехорошим людям прочитать данные, если они это сообщение перехватят. Делается это преобразование по специальным математическим и логическим алгоритмам, некоторые из которых мы рассмотрим ниже.

Исходное сообщение – это, собственно, то, что мы хотим зашифровать. Классический пример — текст.

Шифрованное сообщение – это сообщение, прошедшее процесс шифрования.

Шифр — это сам алгоритм, по которому мы преобразовываем сообщение.

Ключ — это компонент, на основе которого можно произвести шифрование или дешифрование.

Алфавит – это перечень всех возможных символов в исходном и зашифрованном сообщении. Включая цифры, знаки препинания, пробелы, отдельно строчные и заглавные буквы и т.д.

Теперь, когда мы говорим на более-менее одном языке, разберем простые шифры.

Шифр Атбаша

Самый-самый простой шифр. Его суть – переворот алфавита с ног на голову.

Например, есть у нас алфавит, который полностью соответствует обычной латинице.

Для реализации шифра Атбаша просто инвертируем его. «А» станет «Z», «B» превратится в «Y» и наоборот. На выходе получим такую картину:

И теперь пишем нужное сообшение на исходном алфавите и алфавите шифра

Исходное сообщение: I love habr
Зашифрованное: r olev szyi

Шифр Цезаря

Тут добавляется еще один параметр — примитивный ключ в виде числа от 1 до 25 (для латиницы). На практике, ключ будет от 4 до 10.

Опять же, для наглядности, возьмем латиницу

И теперь сместим вправо или влево каждую букву на ключевое число значений.

Например, ключ у нас будет 4 и смещение вправо.

Исходный алфавит: a b c d e f g h i j k l m n o p q r s t u v w x y z
Зашифрованный: w x y z a b c d e f g h i j k l m n o p q r s t u v

Пробуем написать сообщение:

Шифруем его и получаем следующий несвязный текст:

Шифр Вернама (XOR-шифр)

Простейший шифр на основе бинарной логики, который обладает абсолютной криптографической стойкостью. Без знания ключа, расшифровать его невозможно (доказано Клодом Шенноном).

Исходный алфавит — все та же латиница.

Сообщение разбиваем на отдельные символы и каждый символ представляем в бинарном виде.
Классики криптографии предлагают пятизначный код бодо для каждой буквы. Мы же попробуем изменить этот шифр для кодирования в 8 бит/символ на примере ASCII-таблицы. Каждую букву представим в виде бинарного кода.

Теперь вспомним курс электроники и элемент «Исключающее ИЛИ», также известный как XOR.

XOR принимает сигналы (0 или 1 каждый), проводит над ними логическую операцию и выдает один сигнал, исходя из входных значений.

Если все сигналы равны между собой (0-0 или 1-1 или 0-0-0 и т.д.), то на выходе получаем 0.
Если сигналы не равны (0-1 или 1-0 или 1-0-0 и т.д.), то на выходе получаем 1.

Теперь для шифровки сообщения, введем сам текст для шифровки и ключ такой же длины. Переведем каждую букву в ее бинарный код и выполним формулу сообщение XOR ключ

сообщение: LONDON
ключ: SYSTEM

Переведем их в бинарный код и выполним XOR:

В данном конкретном примере на месте результирующих символов мы увидим только пустое место, ведь все символы попали в первые 32 служебных символа. Однако, если перевести полученный результат в числа, то получим следующую картину:

С виду — совершенно несвязный набор чисел, но мы-то знаем.

Шифр кодового слова

Принцип шифрования примерно такой же, как у шифра цезаря. Только в этом случае мы сдвигаем алфавит не на определенное число позиций, а на кодовое слово.

Например, возьмем для разнообразия, кириллический алфавит.

Придумаем кодовое слово. Например, «Лукоморье». Выдернем из него все повторяющиеся символы. На выходе получаем слово «Лукомрье».

Теперь вписываем данное слово в начале алфавита, а остальные символы оставляем без изменений.

И теперь запишем любое сообщение и зашифруем его.

Получим в итоге следующий нечитаемый бред:

Шифр Плейфера

Классический шифр Плейфера предполагает в основе матрицу 5х5, заполненную символами латинского алфавита (i и j пишутся в одну клетку), кодовое слово и дальнейшую манипуляцию над ними.

Пусть кодовое слово у нас будет «HELLO».

Сначала поступаем как с предыдущим шифром, т.е. уберем повторы и запишем слово в начале алфавита.

Читайте также:  Как отключить пуш сообщения билайн

Теперь возьмем любое сообщение. Например, «I LOVE HABR AND GITHUB».

Разобьем его на биграммы, т.е. на пары символов, не учитывая пробелы.

Если бы сообщение было из нечетного количества символов, или в биграмме были бы два одинаковых символа (LL, например), то на место недостающего или повторившегося символа ставится символ X.

Шифрование выполняется по нескольким несложным правилам:

1) Если символы биграммы находятся в матрице на одной строке — смещаем их вправо на одну позицию. Если символ был крайним в ряду — он становится первым.

Например, EH становится LE.

2) Если символы биграммы находятся в одном столбце, то они смещаются на одну позицию вниз. Если символ находился в самом низу столбца, то он принимает значение самого верхнего.

Например, если бы у нас была биграмма LX, то она стала бы DL.

3) Если символы не находятся ни на одной строке, ни на одном столбце, то строим прямоугольник, где наши символы — края диагонали. И меняем углы местами.

Например, биграмма RA.

По этим правилам, шифруем все сообщение.

Если убрать пробелы, то получим следующее зашифрованное сообщение:

Поздравляю. После прочтения этой статьи вы хотя бы примерно понимаете, что такое шифрование и знаете как использовать некоторые примитивные шифры и можете приступать к изучению несколько более сложных образцов шифров, о которых мы поговорим позднее.

В XXI веке криптография играет серьезную роль в цифровой жизни современных людей. Кратко рассмотрим способы шифрования информации.

Скорее всего, вы уже сталкивались с простейшей криптографией и, возможно, знаете некоторые способы шифрования. Например Шифр Цезаря часто используется в развивающих детских играх.

ROT13 – еще один распространенный тип шифрования сообщений. В нём каждая буква алфавита сдвигается на 13 позиций, как показано на рисунке:

Как можно заметить, этот шифр не обеспечивает по-настоящему надежную защиту информации: он является простым и понятным примером всей идеи криптографии.

Сегодня мы говорим о криптографии чаще всего в контексте какой-то технологии. Как безопасно передается личная и финансовая информация, когда мы совершаем покупку в интернете или просматриваем банковские счета? Как можно безопасно хранить данные, чтобы никто не мог просто открыть компьютер, вытащить жесткий диск и иметь полный доступ ко всей информации на нём? Ответим на эти и другие вопросы в данной статье.

В кибербезопасности есть ряд вещей, которые беспокоят пользователей, когда дело доходит до каких-либо данных. К ним относятся конфиденциальность, целостность и доступность информации.

Конфиденциальность – данные не могут быть получены или прочитаны неавторизованными пользователями.

Целостность информации – уверенность в том, что информация 100% останется нетронутой и не будет изменена злоумышленником.

Доступность информации – получение доступа к данным, когда это необходимо.

Также в статье рассмотрим различные формы цифровой криптографии и то, как они могут помочь достичь целей, перечисленных выше.

Основные способы шифрования:
  • Симметрично
  • Асимметричное
  • Хеширование
  • Цифровая подпись

Прежде чем мы начнем разбираться в теме, ответим на простой вопрос: что именно подразумевается под "шифрованием"? Шифрование – преобразование информации в целях сокрытия от неавторизованных лиц, но в то же время с предоставлением авторизованным пользователям доступа к ней.

Чтобы правильно зашифровать и расшифровать данные, нужны две вещи: данные и ключ для дешифровки. При использовании симметричного шифрования ключ для шифрования и расшифровки данных одинаковый. Возьмем строку и зашифруем ее с помощью Ruby и OpenSSL:

Вот что выведет программа:

Обратите внимание, что переменная data_to_encrypt, которая изначально была строкой “now you can read me!”, теперь куча непонятных символов. Обратим процесс, используя ключ, который изначально сохранили в переменной key.

После использования того же ключа, который мы установили для шифрования, дешифруем сообщение и получаем исходную строку.

Давайте рассмотрим и другие способы шифрования.

Проблема симметричного шифрования заключается в следующем: предположим, необходимо отправить какие-то данные через Интернет. Если для шифрования и расшифровки данных требуется один и тот же ключ, то получается, что сначала нужно отправить ключ. Это означает, что отослать ключ надо будет через небезопасное соединение. Но так ключ может быть перехвачен и использован третьей стороной. Чтобы избежать такого исхода, изобрели асимметричное шифрование.

Дабы использовать асимметричное шифрование, необходимо сгенерировать два математически связанных ключа. Один – это приватный ключ, доступ к которому имеете только вы. Второй – открытый, который является общедоступным.

Рассмотрим пример общения с использованием асимметричного шифрования. В нём отправлять сообщения друг другу будут сервер и пользователь. У каждого из них есть по два ключа: приватный и публичный. Ранее было сказано, что ключи связные. Т.е. сообщение, зашифрованное приватным ключом можно расшифровать только с помощью смежного публичного ключа. Поэтому чтобы начать общение, нужно обменяться публичными ключами.

Но как понять, что открытый ключ сервера принадлежит именно этому серверу? Существует несколько способов решения этой проблемы. Наиболее распространенный метод (и тот, который используется в интернете) – использование инфраструктуры открытых ключей (PKI). В случае веб-сайтов существует Центр сертификации, у которого есть каталог всех сайтов, на которые были выданы сертификаты и открытые ключи. При подключении к веб-сайту его открытый ключ сначала проверяется центром сертификации.

Создадим пару открытого и закрытого ключей:

Обратите внимание, что приватный ключ и открытый ключ являются отдельными объектами с различными идентификаторами. Используя #private_encrypt, можно зашифровать строку с помощью закрытого ключа, а используя #public_decrypt – расшифровать сообщение:

Хеширование, в отличие от симметричного и асимметричного шифрования, является односторонней функцией. Можно создать хеш из некоторых данных, но нет никакого способа, чтобы обратить процесс. Это делает хеширование не очень удобным способом хранения данных, но подходящим для проверки целостности некоторых данных.

Функция в качестве входных данных принимает какую-то информацию и выводит, казалось бы, случайную строку, которая всегда будет одинаковой длины. Идеальная функция хеширования создает уникальные значения для различных входов. Одинаковый ввод всегда будет производить одинаковый хеш. Поэтому можно использовать хеширование для проверки целостности данных.

Создадим новую строку, хешируем её и сохраним результат в переменной:

Снова хешируем строку и сравниваем её с той, что сохранили в переменной digest:

Пока данные остаются прежними, строки будут совпадать. Теперь давайте немного их изменим и снова сравним. Затем изменим данные обратно на то, что было изначально, и еще раз сравним:

Чтобы показать, как выглядят разные строки похожих исходных данных, взгляните на это:

Цифровая подпись представляет собой комбинацию хеширования и асимметричного шифрования. То есть сообщения сначала хешируется, а после шифруется с помощью приватного ключа отправителя.

Получатель использует открытый ключ отправителя для извлечения хеша из подписи, затем сообщение снова хешируется для сравнения с извлеченным хешем. Если вы точно знаете, что открытый ключ принадлежит отправителю и расшифровка открытого ключа прошла успешно, можете быть уверены, что сообщение действительно пришло от отправителя. Совпадение хешей говорит о том, что сообщение не было никак изменено.

Но не стоит забывать, что цифровая подпись не обязательно делает сообщение конфиденциальным. Цифровые подписи будут работать с зашифрованными сообщениями, но шифрование самого сообщения должно выполняться отдельно.

Ссылка на основную публикацию
Что такое экспоненциальная форма записи числа
Запись (значения) — Учётная запись Нотная запись Демо запись Двойная запись Запись MX Алфавитная запись Клятвенная запись Экспоненциальная запись Обратная...
Что мне задали завтра на русский
Проверка орфографии на 5-ege.ru (введите текст в форму ниже): Если нужно проверить пунктуацию, воспользуйтесь сервисом Проверка пунктуации онлайн. Наш сервис...
Что лучше газель некст или фиат дукато
На прошлой неделе Газель-Некст была признана лучшим автомобилем года в России. Эксперты коммерческого транспорта оценили ее в 2–3 раза выше,...
Что такое чувырла википедия
Чувырла - почётный дворянский титул, даётся чучундрам заособые заслуги. Этот вопрос уже закрыт. Вы не можете на него ответить. Ответы...
Adblock detector