Шифр перестановки информация правила алгоритм

Шифр перестановки информация правила алгоритм

При шифровании перестановкой символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока этого текста.

Выбирается размер блока шифрования в n столбцов и m строк и ключевая последовательность, которая формируется из натурального ряда чисел 1,2. n случайной перестановкой.

Шифрование проводится в следующем порядке:

Шифруемый текст записывается последовательными строками под числами ключевой последовательности, образуя блок шифрования размером n*m.

Зашифрованный текст выписывается колонками в порядке возрастания номеров колонок, задаваемых ключевой последовательностью.

Заполняется новый блок и т.д.

Например, зашифруем текст

блоком размером 8*3 и ключом 5-8-1-3-7-4-6-2.

Таблица простой перестановки будет иметь вид:

5 8 1 3 7 4 6 2

Г Р У З И Т Е _

А П Е Л Ь С И Н

Ы _ Б О Ч К А Х

Расшифрование выполняется в следующем порядке:

Из зашифрованного текста выделяется блок символов размером n*m.

Этот блок разбивается на n групп по m символов.

Символы записываются в те столбцы таблицы перестановки, номера которых совпадают с номерами групп в блоке. Расшифрованный текст читается по строкам таблицы перестановки.

Выделяется новый блок символов и т.д.

Перестановка, усложненная по таблице

При усложнении перестановки по таблицам для повышения стойкости шифра в таблицу перестановки вводятся неиспользуемые клетки таблицы. Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования.

При шифровании текста в неиспользуемые элементы не заносятся символы текста и в зашифрованный текст из них не записываются никакие символы — они просто пропускаются. При расшифровке символы зашифрованного текста также не заносятся в неиспользуемые элементы.

Для дальнейшего увеличения криптостойкости шифра можно в процессе шифрования менять ключи, размеры таблицы перестановки, количество и расположение неиспользуемых элементов по некоторому алгоритму, причем этот алгоритм становится дополнительным ключом шифра.

Перестановка, усложненная по маршрутам

Высокую стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используются несколько различных маршрутов. Для примера рассмотрим шифрование по маршрутам Гамильтона при n=3.

Струкрура трехмерного гиперкуба представлена на рисунке 6.

Рисунок 6. Трехмерный гиперкуб

Номера вершин куба определяют последовательность его заполнения символами шифруемого текста при формировании блока. В общем случае n-мерный гиперкуб имеет n 2 вершин.

Рисунок 7. Маршруты Гамильтона

Последовательность перестановок символов в шифруемом блоке для первой схемы 5-6-2-1-3-4-8-7, а для второй 5-1-3-4-2-6-8-7. Аналогично можно получить последовательность перестановок для других маршрутов: 5-7-3-1-2-6-8-4, 5-6-8-7-3-1-2-4, 5-1-2-4-3-7-8-6 и т.д.

Размерность гиперкуба, количество вид выбираемых маршрутов Гамильтона составляют секретный ключ метода.

Стойкость простой перестановки однозначно определяется размерами используемой матрицы перестановки. Например, при использовании матрицы 16*16 число возможных перестановок достигает 1.4E26. Такое число вариантов невозможно перебрать даже с использованием ЭВМ. Стойкость усложненных перестановок еще выше. Однако следует иметь в виду, что при шифровании перестановкой полностью сохраняются вероятностные характеристики исходного текста, что облегчает криптоанализ.

Шифрование по методу магических квадратов.

Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, строке и диагонали одно и то же число.

При шифровании буквы открытого текста необходимо вписать в магический квадрат в соответствии с нумерацией его клеток. Для получения шифротекста считывают содержимое заполненной таблицы по строкам.

Зашифруем фразу «МАГИЧЕСКАЯ СИЛА» с помощью магического квадрата размером 4х4. Для этого выберем один из 880 вариантов магических квадратов заданного размера (рисунок 8а). Затем вписываем каждую букву сообщения в отдельную ячейку таблицы с номером, соответствующим порядковому номеру буквы в исходной фразе (рисунок 8б). При считывании заполненной таблицы по строкам получаем шифротекст: «_ГАИАЕССЧЯ_КИАЛМ».

Рисунок 8. Пример шифрования с помощью магических квадратов

Шифрование перестановкой заключается в том, что символы открытого текста переставляются по определенному правилу в пределах некоторого блока этого текста. Рассмотрим перестановку, предназначенную для шифрования сообщения длиной n символов. Его можно представить с помощью таблицы

,

где i1 номер места шифртекста, на которое попадает первая буква открытого текста при выбранном преобразовании, i2 — номер места для второй буквы и т. д. В верхней строке таблицы выписаны по порядку числа от 1 до n, а в нижней те же числа, но в произвольном порядке. Такая таблица называется перестановкой степени n.

Зная перестановку, задающую преобразование, можно осуществить как шифрование, так и расшифрование текста. В этом случае, сама таблица перестановки служит ключом шифрования.

Число различных преобразований шифра перестановки, предназначенного для шифрования сообщений длины n, меньше либо равно n! (nфакториал). Заметим, что в это число входит и вариант преобразования, оставляющий все символы на своих местах.

С увеличением числа n значение n! растет очень быстро. Для использования на практике такой шифр не удобен, так как при больших значениях n приходится работать с длинными таблицами. Поэтому широкое распространение получили шифры, использующие не саму таблицу перестановки, а некоторое правило, порождающее эту таблицу. Рассмотрим несколько примеров таких шифров.

Шифр перестановки "скитала".Известно, что в Vвеке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения (рис. 1.2). Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично.

Рис. 1.2. Шифр "Скитала"

Такой же результат можно получить, если буквы сообщения писать по кольцу не подряд, а через определенное число позиций до тех пор, пока не будет исчерпан весь текст. Сообщение "НАСТУПАЙТЕ" при размещении его по окружности стержня по три буквы дает шифртекст: "НУТАПЕСА_ТЙ".

Читайте также:  Adguard антибаннер для оперы

Для расшифрования такого шифртекста нужно не только знать правило шифрования, но и обладать ключом в виде стержня определенного диаметра. Зная только вид шифра, но не имея ключа, расшифровать сообщение было непросто.

Шифрующие таблицы. С начала эпохи Возрождения (конец XIV столетия) начала возрождаться и криптография. В разработанных шифрах перестановки того времени применяются шифрующие таблицы, которые, в сущности, задают правила перестановки букв в сообщении.

В качестве ключа в шифрующих таблицах используются:

слово или фраза, задающие перестановку;

особенности структуры таблицы.

Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования сходен с шифром скитала. Например, сообщение "ТЕРМИНАТОР ПРИБЫВАЕТ СЕДЬМОГО В ПОЛНОЧЬ" записывается в таблицу поочередно по столбцам. Результат заполнения таблицы из 5 строк и 7 столбцов показан на рис. 1.3.

После заполнения таблицы текстом сообщения по столбцам для формирования шифртекста считывают содержимое таблицы по строкам. Если шифртекст записывать группами по пять букв, получается такое шифрованное сообщение: "ТНПВЕ ГЛЕАР АДОНР ТИЕЬВ ОМОБТ МПЧИР ЫСООЬ".

Рис. 1.3. Заполнение шифрующей таблицы из 5 строк и 7 столбцов

Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. Следует заметить, что объединение букв шифртекста в 5-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.

Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу. Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Применим в качестве ключа, например, слово "ПЕЛИКАН", а текст сообщения возьмем из предыдущего примера. На рис. 1.4 показаны две таблицы, заполненные текстом сообщения и ключевым словом, при этом левая таблица соответствует заполнению до перестановки, а правая таблица – заполнению после перестановки.

Рис. 1.4. Шифрующие таблицы, заполненные ключевым словом и текстом сообщения

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если бы в ключе встретились одинаковые буквы, они бы были понумерованы слева направо. В правой таблице столбцы переставлены в соответствии с упорядоченными номерами букв ключа.

При считывании содержимого правой таблицы по строкам и записи шифртекста группами по пять букв получим шифрованное сообщение: "ГНВЕП ЛТООА ДРНЕВ ТЕЬИО РПОТМ БЧМОР СОЫЬИ".

Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже прошло шифрование. Такой метод шифрования называется двойной перестановкой. В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и отдельно для строк. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровании порядок перестановок должен быть обратным.

Пример выполнения шифрования методом двойной перестановки показан на рис. 1.5. Если считывать шифртекст из правой таблицы построчно блоками по четыре буквы, то получится следующее: "ТЮАЕ ООГМ РЛИП ОЬСВ".

Рис. 1.5. Пример выполнения шифрования методом двойной перестановки

Ключом к шифру двойной перестановки служит последовательность номеров столбцов и номеров строк исходной таблицы (в нашем примере последовательности 4132 и 3142 соответственно).

Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы:

для таблицы 3×3 36 вариантов;

для таблицы 4×4 576 вариантов;

для таблицы 5×5 14400 вариантов.

Шифрование с помощью магических квадратов. В средние века для шифрования перестановкой применялись и магические квадраты. Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

Шифруемый текст вписывали в магические квадраты в соответствии с нумерацией их клеток. Если затем выписать содержимое такой таблицы по строкам, то получится шифртекст, сформированный благодаря перестановке букв исходного сообщения.

Пример магического квадрата и его заполнения сообщением "ПРИЛЕТАЮ ВОСЬМОГО" показан на рис. 1.6.

Рис. 1.6. Пример магического квадрата 4х4 и его заполнение сообщением

Шифртекст, получаемый при считывании содержимого правой таблицы по строкам, имеет вполне загадочный вид: "ОИРМ ЕОСЮ ВТАЪ ЛГОП".

Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3×3 (если не учитывать его повороты). Количество магических квадратов 4×4 составляет уже 880, а количество магических квадратов 5×5 – около 250000.

Магические квадраты средних и больших размеров могли служить хорошей базой для обеспечения нужд шифрования того времени, поскольку практически нереально выполнить вручную перебор всех вариантов для такого шифра.

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

БИК Курс лекций по дисциплине «Информационная безопасность»

Методы и способы защиты информации

3.2 Шифры перестановки и замены

1. Шифры перестановки

Определение преобразования — перестановка

Шифрование перестановкой заключается в том, что символы открытого текста переставляются по определенному правилу в пределах некоторого блока этого текста. Рассмотрим перестановку, предназначенную для шифрования сообщения длиной n символов. Его можно представить с помощью таблицы

где i 1 — номер места шифртекста, на которое попадает первая буква открытого текста при выбранном преобразовании, i 2 — номер места для второй буквы и т. д.

В верхней строке таблицы выписаны по порядку числа от 1 до n, а в нижней те же числа, но в произвольном порядке. Такая таблица называется перестановкой степени n .

Зная перестановку, задающую преобразование, можно осуществить как шифрование, так и расшифрование текста. В этом случае, сама таблица перестановки служит ключом шифрования.

Читайте также:  Ошибка установки 0x80248007 windows 10

Число различных преобразований шифра перестановки, предназначенного для шифрования сообщений длины n, меньше либо равно n! (n факториал). Заметим, что в это число входит и вариант преобразования, оставляющий все символы на своих местах.

С увеличением числа n значение n! растет очень быстро. Для использования на практике такой шифр не удобен, так как при больших значениях n приходится работать с длинными таблицами. Поэтому широкое распространение получили шифры, использующие не саму таблицу перестановки, а некоторое правило, порождающее эту таблицу. Рассмотрим несколько примеров таких шифров.

Примеры шифрования методом перестановки

Шифр перестановки "скитала ". Известно, что в V веке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала , первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично.

Такой же результат можно получить, если буквы сообщения писать по кольцу не подряд, а через определенное число позиций до тех пор, пока не будет исчерпан весь текст. Сообщение "НАСТУПАЙТЕ" при размещении его по окружности стержня по три буквы дает шифртекст: "НУТАПЕСА_ТЙ".

Для расшифрования такого шифртекста нужно не только знать правило шифрования, но и обладать ключом в виде стержня определенного диаметра. Зная только вид шифра, но, не имея ключа, расшифровать сообщение было непросто.

Шифрующие таблицы. С начала эпохи Возрождения (конец XIV столетия) начала возрождаться и криптография. В разработанных шифрах перестановки того времени применяются шифрующие таблицы, которые, в сущности, задают правила перестановки букв в сообщении.

В качестве ключа в шифрующих таблицах используются:

— слово или фраза, задающие перестановку;

— особенности структуры таблицы.

Одним из самых примитивных табличных шифров перестановки является простая перестановка , для которой ключом служит размер таблицы. Этот метод шифрования сходен с шифром скитала. Например, сообщение "ТЕРМИНАТОР ПРИБЫВАЕТ СЕДЬМОГО В ПОЛНОЧЬ" записывается в таблицу поочередно по столбцам. Результат заполнения таблицы из 5 строк и 7 столбцов показан на рисунке.

После заполнения таблицы текстом сообщения по столбцам для формирования шифртекста считывают содержимое таблицы по строкам. Если шифртекст записывать группами по пять букв, получается такое шифрованное сообщение: "ТНПВЕ ГЛЕАР АДОНР ТИЕЬВ ОМОБТ МПЧИР ЫСООЬ".

Заполнение шифрующей таблицы из 5 строк и 7 столбцов

Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. Следует заметить, что объединение букв шифртекста в 5-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.

Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу. Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Применим в качестве ключа, например, слово "ПЕЛИКАН" , а текст сообщения возьмем из предыдущего примера. На рисунке показаны две таблицы, заполненные текстом сообщения и ключевым словом, при этом левая таблица соответствует заполнению до перестановки, а правая таблица — заполнению после перестановки.

Шифрующие таблицы, заполненные ключевым словом и текстом сообщения

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если бы в ключе встретились одинаковые буквы, они бы были понумерованы слева направо. В правой таблице столбцы переставлены в соответствии с упорядоченными номерами букв ключа.
При считывании содержимого правой таблицы по строкам и записи шифртекста группами по пять букв получим шифрованное сообщение: "ГНВЕП ЛТООА ДРНЕВ ТЕЬИО РПОТМ БЧМОР СОЫЬИ".

Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже прошло шифрование. Такой метод шифрования называется двойной перестановкой . В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и отдельно для строк. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровании порядок перестановок должен быть обратным.

Пример выполнения шифрования методом двойной перестановки показан ниже на рисунке. Если считывать шифртекст из правой таблицы построчно блоками по четыре буквы, то получится следующее: "ТЮАЕ ООГМ РЛИП ОЬСВ".

Пример выполнения шифрования методом двойной перестановки

Ключом к шифру двойной перестановки служит последовательность номеров столбцов и номеров строк исходной таблицы (в нашем примере последовательности 4132 и 3142 соответственно).

Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы:

— для таблицы 3×3 36 вариантов;

— для таблицы 4×4 576 вариантов;

— для таблицы 5×5 14400 вариантов.

Шифрование с помощью магических квадратов. В средние века для шифрования перестановкой применялись и магические квадраты. Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

Шифруемый текст вписывали в магические квадраты в соответствии с нумерацией их клеток. Если затем выписать содержимое такой таблицы по строкам, то получится шифртекст, сформированный благодаря перестановке букв исходного сообщения.

Пример магического квадрата и его заполнения сообщением "ПРИЛЕТАЮ ВОСЬМОГО" показан на рисунке.

Пример магического квадрата 4х4 и его заполнение сообщением

Шифртекст, получаемый при считывании содержимого правой таблицы по строкам, имеет вполне загадочный вид: "ОИРМ ЕОСЮ ВТАЪ ЛГОП".

Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3×3 (если не учитывать его повороты). Количество магических квадратов 4×4 составляет уже 880, а количество магических квадратов 5×5 — около 250000.

Читайте также:  Клавиатура с цифрами для ноутбука

Магические квадраты средних и больших размеров могли служить хорошей базой для обеспечения нужд шифрования того времени, поскольку практически нереально выполнить вручную перебор всех вариантов для такого шифра.

Определение преобразования – замена

Шифрами замены называются такие шифры, преобразования из которых приводят к замене каждого символа открытого текста на другие символы — шифрообозначения, причем порядок следования шифрообозначений совпадает с порядком следования соответствующих им символов открытого сообщения.

В своей простейшей форме шифр замены может быть задан таблицей подстановки, устанавливающей соответствие междубуквами двух алфавитов An и Bn:

где — i-тая буква алфавита открытого текста, — шифрообозначение a i (соответствующая a i буква алфавита шифртекста).

В качестве примера преобразования, которое может содержаться в шифре замены, приведем такое правило. Каждая буква исходного сообщения заменяется на ее порядковый номер в алфавите. В этом случае исходный буквенный текст преобразуется в числовой.

Алфавиты A n и B n не обязательно должны быть различными. В практической криптографии очень часто применяются шифры, в которых алфавиты A n и B n совпадают.

В шифре простой замены каждый символ исходного текста заменяется символами того же алфавита одинаково на всем протяжении текста.

В шифрах сложной замены для шифрования каждого символа открытого текста применяют свой шифр простой замены. Для реализации шифров сложной замены последовательно и циклически меняют используемые таблицы подстановки.

Примеры шифрования методом замены

Полибианский квадрат. Одним из первых шифров простой замены считается так называемый полибианский квадрат. За два века до нашей эры греческий писатель и историк Полибий изобрел для целей шифрования квадратную таблицу размером 5×5, заполненную буквами греческого алфавита в случайном порядке.

При шифровании в этом полибианском квадрате находили очередную букву открытого текста и записывали в шифртекст букву, расположенную ниже ее в том же столбце. Если буква текста оказывалась в нижней строке таблицы, то для шифртекста брали самую верхнюю букву из того же столбца. Например, для слова " " получается шифртекст "".

Концепция полибианского квадрата оказалась плодотворной и нашла применение в криптосистемах последующего времени.

Система шифрования Цезаря. Шифр Цезаря является частным случаем шифра простой замены. Свое название этот шифр получил по имени римского императора Гая Юлия Цезаря, который использовал этот шифр при переписке с Цицероном (около 50 г. до н.э.).

При шифровании исходного текста каждая буква заменялась на другую букву того же алфавита по следующему правилу. Заменяющая буква определялась путем смещения по алфавиту от исходной буквы на К букв. При достижении конца алфавита выполнялся циклический переход к его началу. Цезарь использовал шифр замены при смещении К = 3. Такой шифр замены можно задать таблицей подстановки, содержащей соответствующие пары букв открытого текста и шифртекста. Совокупность возможных подстановок для К=3 показана в таблице.

Таблица подстановки шифра Цезаря

Например, послание Цезаря "VENI VIDI VICI" ("Пришел, Увидел, Победил") выглядело бы в зашифрованном виде так: "YHQL YLGL YLFL" .

Система шифрования Цезаря с ключевым словом. Особенностью этой системы является использование ключевого слова для смещения и изменения порядка символов в алфавите подстановки.

Выберем некоторое число k, 0 Шифрующая таблица Трисемуса с ключевым словом "БАНДЕРОЛЬ"

Как и в случае полибианского квадрата, при шифровании находят в этой таблице очередную букву открытого текста и записывают в шифртекст букву, расположенную ниже ее в том же столбце. Если буква текста оказывается в нижней строке таблицы, тогда для шифртекста берут самую верхнюю букву из того же столбца.

Например, при шифровании с помощью этой таблицы сообщения "ВЫЛЕТАЕМПЯТОГО" получаем шифртекст "ПДКЗЫВЗЧШЛЫЙСЙ".

Система шифрования Вижинера впервые была опубликована в 1586 г. и является одной из старейших и наиболее известных шифров сложной замены. Свое название она получила по имени французского дипломата XVI века Блеза Вижинера, который развивал и совершенствовал криптографические системы.

Система Вижинера подобна такой системе шифрования Цезаря, у которой ключ подстановки меняется от буквы к букве. Этот шифр можно описать таблицей шифрования, называемой таблицей (квадратом) Вижинера. Пример квадрата Вижинера для русского языка приведен в таблице.

Таблица Вижинера используется для шифрования и расшифрования. Таблица имеет два входа: верхнюю строку подчеркнутых символов, используемую для считывания очередной буквы исходного открытого текста; крайний левый столбец ключа. Последовательность ключей обычно получают из числовых значений букв ключевого слова.

При шифровании исходного сообщения его выписывают в строку, а под ним записывают ключевое слово (или фразу). Если ключ оказался короче сообщения, то его циклически повторяют. В процессе шифрования находят в верхней строке таблицы очередную букву исходного текста и в левом столбце очередное значение ключа. Очередная буква шифртекста находится на пересечении столбца, определяемого шифруемой буквой, и строки, определяемой числовым значением ключа.

Рассмотрим пример получения шифртекста с помощью таблицы Вижинера. Пусть выбрано ключевое слово "АМБРОЗИЯ" . Необходимо зашифровать сообщение "ПРИЛЕТАЮ СЕДЬМОГО" .

Выпишем исходное сообщение в строку и запишем под ним ключевое слово с повторением. В третью строку будем выписывать буквы шифртекста, определяемые из таблицы Вижинера.

Сообщение ПРИЛЕТАЮ СЕДЬМОГО

Ключ АМБРОЗИЯ АМБРОЗИЯ

Шифртекст ПЪЙЫУЩИЭ ССЕКЬХЛН

Квадрат Вижиненра для русского языка

Объясните суть преобразования — перестановка.

Что может использоваться в качестве ключа в шифрующих таблицах?

Приведите пример табличной перестановки с использованием ключевого слова.

Приведите пример простой табличной перестановки.

Приведите пример двойной табличной перестановки.

В чем суть использования магических квадратов?

Объясните суть преобразования — замена.

Что из себя представляет система шифрования с использованием таблицы Вижинера?

Объясните суть шифрующей таблицы Трисемуса.

Приведите пример системы шифрования Цезаря.

Приведите пример системы шифрования Цезаря с ключевым словом.

Ссылка на основную публикацию
Что такое экспоненциальная форма записи числа
Запись (значения) — Учётная запись Нотная запись Демо запись Двойная запись Запись MX Алфавитная запись Клятвенная запись Экспоненциальная запись Обратная...
Что мне задали завтра на русский
Проверка орфографии на 5-ege.ru (введите текст в форму ниже): Если нужно проверить пунктуацию, воспользуйтесь сервисом Проверка пунктуации онлайн. Наш сервис...
Что лучше газель некст или фиат дукато
На прошлой неделе Газель-Некст была признана лучшим автомобилем года в России. Эксперты коммерческого транспорта оценили ее в 2–3 раза выше,...
Что такое чувырла википедия
Чувырла - почётный дворянский титул, даётся чучундрам заособые заслуги. Этот вопрос уже закрыт. Вы не можете на него ответить. Ответы...
Adblock detector