Формула правых и левых прямоугольников

Формула правых и левых прямоугольников

Метод прямоугольников – это, пожалуй, самый простой метод приближённого вычисления определённого интеграла. И парадокс состоит в том, что по этой причине (видимо) он довольно редко встречается на практике. Неудивительно, что данная статья появилась на свет через несколько лет после того, как я рассказал о более распространённых методах трапеции и Симпсона, где упомянул о прямоугольниках лишь вскользь. Однако на сегодняшний день раздел об интегралах практически завершён и поэтому настало время закрыть этот маленький пробел. Читаем, вникаем и смотрим видео! ….о чём? Об интегралах, конечно =)

Постановка задачи уже была озвучена на указанном выше уроке, и сейчас мы быстренько актуализируем материал:

Рассмотрим интеграл . Он неберущийся. Но с другой стороны, подынтегральная функция непрерывна на отрезке , а значит, конечная площадь существует. Как её вычислить? Приближённо. И сегодня, как вы догадываетесь – методом прямоугольников.

Разбиваем промежуток интегрирования на 5, 10, 20 или бОльшее количество равных (хотя это не обязательно) отрезков, чем больше – тем точнее будет приближение. На каждом отрезке строим прямоугольник, одна из сторон которого лежит на оси , а противоположная – пересекает график подынтегральной функции. Вычисляем площадь полученной ступенчатой фигуры, которая и будет приближённой оценкой площади криволинейной трапеции (заштрихована на 1-м рисунке).

Очевидно, что прямоугольники можно построить многими способами, но стандартно рассматривают 3 модификации:

1) метод левых прямоугольников;
2) метод правых прямоугольников;
3) метод средних прямоугольников.

Оформим дальнейшие выкладки в рамках «полноценного» задания:

Вычислить определённый интеграл приближённо:
а) методом левых прямоугольников;
б) методом правых прямоугольников.

Промежуток интегрирования разделить на равных отрезков, результаты вычислений округлять до 0,001

Решение: признАюсь сразу, я специально выбрал такое малое значение – из тех соображений, чтобы всё было видно на чертеже – за что пришлось поплатиться точностью приближений.

Вычислим шаг разбиения (длину каждого промежуточного отрезка):

Метод левых прямоугольников получил своё называние из-за того,

что высОты прямоугольников на промежуточных отрезках равны значениям функции в левых концах данных отрезков:

Ни в коем случае не забываем, что округление следует проводить до трёх знаков после запятой – это существенное требование условия, и «самодеятельность» здесь чревата пометкой «оформите задачу, как следует».

Вычислим площадь ступенчатой фигуры, которая равна сумме площадей прямоугольников:

Таким образом, площадь криволинейной трапеции: . Да, приближение чудовищно грубое (завышение хорошо видно на чертеже), но и пример, повторюсь, демонстрационный. Совершенно понятно, что, рассмотрев бОльшее количество промежуточных отрезков (измельчив разбиение), ступенчатая фигура будет гораздо больше похожа на криволинейную трапецию, и мы получим лучший результат.

При использовании «правого» метода высОты прямоугольников равны значениям функции в правых концах промежуточных отрезков:

Вычислим недостающее значение и площадь ступенчатой фигуры:

– тут, что и следовало ожидать, приближение сильно занижено:

Запишем формулы в общем виде. Если функция непрерывна на отрезке , и он разбит на равных частей: , то определённый интеграл можно вычислить приближенно по формулам:
– левых прямоугольников;
– правых прямоугольников;
(формула в следующей задаче) – средних прямоугольников,
где – шаг разбиения.

В чём их формальное различие? В первой формуле нет слагаемого , а во второй —

На практике рассчитываемые значения удобно заносить в таблицу:

а сами вычисления проводить в Экселе. И быстро, и без ошибок:

Ответ:

Наверное, вы уже поняли, в чём состоит метод средних прямоугольников:

Вычислить приближенно определенный интеграл методом прямоугольников с точностью до 0,01. Разбиение промежутка интегрирования начать с отрезков.

Решение: во-первых, обращаем внимание, что интеграл нужно вычислить с точностью до 0,01. Что подразумевает такая формулировка?

Если в предыдущей задаче требовалось прОсто округлить результаты до 3 знаков после запятой (а уж насколько они будут правдивы – не важно), то здесь найденное приближённое значение площади должно отличаться от истины не более чем на .

И во-вторых, в условии задачи не сказано, какую модификацию метода прямоугольников использовать для решения. И действительно, какую?

По умолчанию всегда используйте метод средних прямоугольников

Почему? А он при прочих равных условиях (том же самом разбиении) даёт гораздо более точное приближение. Это строго обосновано в теории, и это очень хорошо видно на чертеже:

В качестве высот прямоугольников здесь принимаются значения функции, вычисленные в серединах промежуточных отрезков, и в общем виде формула приближённых вычислений запишется следующим образом:
, где – шаг стандартного «равноотрезочного» разбиения .

Читайте также:  Как перевести десятичный логарифм в число

Следует отметить, что формулу средних прямоугольников можно записать несколькими способами, но чтобы не разводить путаницу, я остановлюсь на единственном варианте, который вы видите выше.

Вычисления, как и в предыдущем примере, удобно свести в таблицу. Длина промежуточных отрезков, понятно, та же самая: – и очевидно, что расстояние между серединами отрезков равно этому же числу. Поскольку требуемая точность вычислений составляет , то значения нужно округлять «с запасом» – 4-5 знаками после запятой:

Вычислим площадь ступенчатой фигуры:

Давайте посмотрим, как автоматизировать этот процесс:

Таким образом, по формуле средних прямоугольников:

Как оценить точность приближения? Иными словами, насколько далёк результат от истины (площади криволинейно трапеции)? Для оценки погрешности существует специальная формула, однако, на практике её применение зачастую затруднено, и поэтому мы будем использовать «прикладной» способ:

Вычислим более точное приближение – с удвоенным количеством отрезков разбиения: . Алгоритм решения точно такой же: .

Найдём середину первого промежуточного отрезка и далее приплюсовываем к полученному значению по 0,3. Таблицу можно оформить «эконом-классом», но комментарий о том, что изменяется от 0 до 10 – всё же лучше не пропускать:

В Экселе вычисления проводятся «в один ряд» (кстати, потренируйтесь), а вот в тетради таблицу, скорее всего, придётся сделать двухэтажной (если у вас, конечно, не сверхмелкий почерк).

Вычислим суммарную площадь десяти прямоугольников:

Таким образом, более точное приближение:

Теперь находим модуль разности между двумя приближениями:

Как я уже отмечал в статье Приближённое вычисление определенных интегралов, на практике довольно часто встречается упрощённый подход: поскольку разность больше требуемой точности , то снова удваиваем количество отрезков, находим и разность , которая, очевидно, уже «уложится» в нашу точность: .

Однако существует более эффективный путь решения, основанный на применении правила Рунге, которое утверждает, что при использовании метода средних прямоугольников мы ошибаемся в оценке определённого интеграла менее чем на (! для методов правых и левых прямоугольников правило использовать нельзя!).

В нашем случае: , то есть требуемая точность на самом деле достигнута, и необходимость в вычислении отпадает.

Округляем наиболее точное приближение до двух знаков после запятой и записываем ответ: с точностью до 0,01

Ещё раз – что это значит? Это значит, что площадь криволинейной трапеции гарантированно отличается от найденного приближённого значения 2,59 не более чем на 0,01.

В Примере 2 урока метод трапеций и метод Симпсона я вычислил приближённое значение этого же интеграла методом трапеций. Любознательные читатели могут сравнить полученные здесь и там результаты.

Вернемся ещё к одному маленькому нюансу, который выпал из поля зрения в самом начале урока: обязательно ли в рассматриваемом задании интеграл должен быть неберущимся? Конечно, нет. Приближённые методы вычисления прекрасно работают и для берущихся определённых интегралов. Заключительный школьный, а точнее, техникумовский пример для самостоятельного решения:

Вычислить интеграл приближённо на отрезках разбиения:

1) методом левых прямоугольников;
2) методом правых прямоугольников;
3) методом средних прямоугольников.

Вычислить более точное значение интеграла с помощью формулы Ньютона-Лейбница. Для каждого из трёх случаев найти абсолютную погрешность. Вычисления округлять до 4 знаков после запятой.

Не нужно пугаться такого развёрнутого условия – всё элементарно «перещёлкивается» в Экселе. Напоминаю, что абсолютная погрешность – это модуль разности между точным и приближённым значением. Кстати, обратите внимание на принципиальную разницу: если в предыдущих примерах речь шла лишь об оценке погрешности, то здесь нам будут известны конкретные значения этих погрешностей (т.к. интеграл берётся, и мы достоверно знаем 4 верных цифры после запятой).

Краткое решение и ответ уже, наверное, показались на вашем экране.

И, завершая эту небольшую статьи, хочу отметить, что иногда метод прямоугольников ошибочно называют «плохим», «неточным» и т.п. Ничего подобного! Если уж на то пошло, его корректнее назвать «медленным» методом. Иными словами, чтобы достигнуть определённой точности – нужно рассмотреть бОльшее количество отрезков разбиения по сравнению с более эффективными методом трапеций и ещё более «быстрым» методом Симпсона.

Которые я и предлагаю вам изучить!

Пример 3: Решение: вычислим шаг разбиения:
Заполним расчётную таблицу:

Вычислим интеграл приближённо методом:
1) левых прямоугольников:
;
2) правых прямоугольников:
;
3) средних прямоугольников:
.

Вычислим интеграл более точно по формуле Ньютона-Лейбница:

и соответствующие абсолютные погрешности вычислений:

Ответ:

Автор: Емелин Александр

Читайте также:  Мизу м 5 нот

(Переход на главную страницу)

Профессиональная помощь по любому предмету – Zaochnik.com

Перейдем к модификациям метода прямоугольников.

— это формула метода левых прямоугольников.

— это формула метода правых прямоугольников.

Отличие от метода средних прямоугольников заключается в выборе точек не в середине, а на левой и правой границах элементарных отрезков соответственно.

Абсолютная погрешность методов левых и правых прямоугольников оценивается как .

234567891011121314151617 Program pravii; <Метод правых прямоугольников>uses crt;var i,n:integer; a,b,h,x,xb,s:real;function f(x:real):real;begin f:=(1/x)*sin(3.14*x/2); end;beginclrscr;write(‘Введите нижний предел интегрирования ‘); readln(a);write(‘Введите верхний предел интегрирования ‘); readln(b);write(‘Введите количество отрезков ‘); readln(n);h:=(b-a)/n; s:=0; xb:=a;for i:=1 to n dobegin x:=xb+i*h; s:=s+f(x)*h; end; writeln(‘Интеграл равен ‘,s:12:10); readln;

Для того, чтобы вычислить интеграл по формуле правых прямоугольников в Excel, необходимо выполнить следующие действия:

1. Продолжить работу в том же документе, что и при вычислении интеграла по формуле левых прямоугольников.

2. В ячейку D6 ввести текст y1,…,yn.

3. Ввести в ячейку D8 формулу =КОРЕНЬ(B8^4-B8^3+8), скопировать эту формулу методом протягивания в диапазон ячеек D9:D17

4. Ввести в ячейку D18 формулу =СУММ(D7:D17).

5. Ввести в ячейку D19 формулу =B4*D18.

6. Ввести в ячейку D20 текст правых.

В итоге получаем следующее:

Ответ: значение заданного интеграла равно 14,45905.

Для того, чтобы вычислить интеграл по формуле правых прямоугольников в Mathcad, необходимо выполнить следующие действия:

1. Ввести в поле ввода в одной строчке через какое-либо расстояние следующие выражения: a:=0, b:=3.2, n:=10.

2. В следующей строчке ввести формулу с клавиатуры h:=(b-a)/n (обратить внимание на то, что в поле ввода данное выражение сразу преобразуется к стандартному виду).

3. Рядом вывести значение данного выражения, для этого набрать с клавиатуры: h=.

4. Ниже ввести формулу для вычисления подинтегральной функции, для этого с клавиатуры набрать f(x):=, затем открыть панель инструментов "Арифметика", либо воспользовавшись значком , либо следующим способом:

После этого, на панели инструментов "Арифметика" выбрать "Квадратный корень": , затем в появившемся темном квадрате ввести выражение с клавиатуры x^4-x^3+8, перемещение курсора осуществляется стрелками на клавиатуре (обратить внимание на то, что в поле ввода данное выражение сразу преобразуется к стандартному виду).

5. Ниже ввести выражение I1:=0.

6. Ниже ввести выражение pr_p(a,b,n,h,I1):=.

7. Затем выбрать панель инструментов "Программирование" (либо: "Вид"-"Панели инструментов"-"Программирование", либо: значок ).

8. На панели инструментов "Программирование" добавить строку программы: , затем поставить курсор в первый темный прямоугольник и на панели инструментов "Программирование" выбрать "for".

9. В полученной строке, после слова for, встать курсором в первый из прямоугольников и набрать i.

10. Затем выбрать панель инструментов "Матрицы" (либо: "Вид"-"Панели инструментов"-"Матрицы", либо: значок ).

11. Поставить курсор в следующий темный прямоугольник и на панели инструментов "Матрицы" нажать: , где набрать в двух появившихся прямоугольниках соответственно: 1 и n.

12. Поставить курсор в нижестоящий темный прямоугольник и дважды добавить строку программы.

13. После этого вернуть курсор в первый из появившихся прямоугольников и набрать x1, затем нажать "Локальное присвоение" на панели "Программирование": и после этого набрать a+h.

14. Поставить курсор в следующий темный прямоугольник, где набрать I1 присвоить (кнопка "Локальное присвоение") I1+f(x1).

15. Поставить курсор в следующий темный прямоугольник, где набрать a присвоить (кнопка "Локальное присвоение") x1.

16. В следующем темном прямоугольнике добавить строку программы, где в первом из полученных прямоугольников набрать I1 присвоить (кнопка "Локальное присвоение") I1*h (обратить внимание, что знак умножения в поле ввода автоматически превращается в стандартный).

17. В последнем темном прямоугольнике набрать I1.

18. Ниже ввести pr_p(a,b,n,h,I1) и нажать знак =.

19. Для того, чтобы отформатировать ответ, нужно дважды щелкнуть по полученному числу и указать число десятичный мест — 5.

В итоге получаем:

Ответ: значение заданного интеграла равно 14,45905.

Метод прямоугольников безусловно очень удобен при вычислении определенного интеграла. Работа была очень увлекательна и познавательна.

Существует несколько видов формул прямоугольников:

"Формула левых прямоугольников.

В общем виде формула левых прямоугольниковна отрезке[x;xn]выглядит следующим образом(21):

Читайте также:  Текстовый редактор microsoft office word

В данной формуле x=a, xn=b, так как любой интеграл в общем виде выглядит: (см. формулу18).

h можно вычислить по формуле 19.

Формула правых прямоугольников.

В общем виде формула правых прямоугольниковна отрезке[x;xn]выглядит следующим образом(22):

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников.

Формула средних прямоугольников.

В общем виде формула средних прямоугольниковна отрезке[x;xn]выглядит следующим образом(23):

В данной формуле, как и в предыдущих, требуется h умножать сумму значений функции f(x), но уже не просто подставляя соответствующие значения x,x1. xn-1в функцию f(x), а прибавляя к каждому из этих значенийh/2(x+h/2, x1+h/2. xn-1+h/2), а затем только подставляя их в заданную функцию.

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников." [6]

На практике данные способы реализуются следующим образом:

a) Вычислить интеграл

по формуле левых прямоугольников при n=10, используя:

b) Вычислить интеграл

по формуле правых прямоугольников при n=10, используя:

c) Вычислить интеграл

по формуле средних прямоугольников при n=10, используя:

Для того, чтобы вычислить интеграл по формуле средних прямоугольников в Excel, необходимо выполнить следующие действия:

Продолжить работу в том же документе, что и при вычислении интеграла по формулам левых и правых прямоугольников.

В ячейку E6 ввести текст xi+h/2, а в F6 — f(xi+h/2).

Ввести в ячейку E7 формулу =B7+$B$4/2, скопировать эту формулу методом протягивания в диапазон ячеек E8:E16

Ввести в ячейку F7 формулу =КОРЕНЬ(E7^4-E7^3+8), скопировать эту формулу методом протягивания в диапазон ячеек F8:F16

Ввести в ячейку F18 формулу =СУММ(F7:F16).

Ввести в ячейку F19 формулу =B4*F18.

Ввести в ячейку F20 текст средних.

В итоге получаем следующее:

Ответ: значение заданного интеграла равно 13,40797.

Исходя из полученных результатов, можно сделать вывод, что формула средних прямоугольников является наиболее точной, чем формулы правых и левых прямоугольников.

1. Метод Монте-Карло

"Основная идея метода Монте-Карло заключается в многократном повторении случайных испытаний. Характерной особенностью метода Монте-Карло является использование случайных чисел (числовых значений некоторой случайной величины). Такие числа можно получать с помощью датчиков случайных чисел. Например, в языке программирования Turbo Pascal имеется стандартная функция random , значениями которой являются случайные чис¬ла, равномерно распределенные на отрезке [0; 1]. Сказанное означает, что если разбить указанный отрезок на некоторое число равных интервалов и вычислить значение функции random большое число раз, то в каждый интервал попадет приблизительно одинаковое количество случайных чисел. В языке программирования basin подобным датчиком является функция rnd. В табличном процессоре MS Excel функция СЛЧИС возвращает равномерно распределенное случайное число большее или равное 0 и меньшее 1 (изменяется при пересчете)" [7].

Для того чтобы его вычислить, необходимо воспользоваться формулой ():

, где (i=1, 2, …, n) – случайные числа, лежащие в интервале [a;b].

Для получения таких чисел на основе последовательности случайных чисел xi , равномерно распределенных в интервале [0;1], достаточно выполнить преобразование xi=a+(b-a)xi.

На практике данный способ реализуется следующим образом:

по формуле трапеций при n=10, используя:

Для того, чтобы вычислить интеграл методом Монте-Карло в Excel, необходимо выполнить следующие действия:

В ячейку B1 ввести текст n=.

В ячейку B2 ввести текст a=.

В ячейку B3 ввести текст b=.

В ячейку C1 ввести число 10.

В ячейку C2 ввести число 0.

В ячейку C3 ввести число 3,2.

В ячейку A5 ввести I, в В5 – xi, в C5 – f(xi).

Ячейки A6:A15 заполнить числами 1,2,3, …,10 – так как n=10.

Ввести в ячейку B6 формулу =СЛЧИС()*3,2 (происходит генерация чисел в диапазоне от 0 до 3,2), скопировать эту формулу методом протягивания в диапазон ячеек В7:В15.

Ввести в ячейку C6 формулу =КОРЕНЬ(B6^4-B6^3+8), скопировать эту формулу методом протягивания в диапазон ячеек C7:C15.

Ввести в ячейку B16 текст «сумма», в B17 – «(b-a)/n», в B18 – «I=».

Вести в ячейку C16 формулу =СУММ(C6:C15).

Вести в ячейку C17 формулу =(C3-C2)/C1.

Вести в ячейку C18 формулу =C16*C17.

В итоге получаем:

Ответ: значение заданного интеграла равно 13,12416.

Ссылка на основную публикацию
Файлы mdi чем открыть
Если вы не смогли открыть файл двойным нажатием на него, то вам следует скачать и установить одну из программ представленных...
Украли сумку с документами что делать
В связи с угрозой распространения на территории Российской Федерации коронавирусной инфекции приостановлен личный прием граждан в судах. Смотреть как изолируются...
Ультра исо вам необходимо иметь права администратора
Очень многие пользователи, когда им нужно сделать загрузочную флешку Windows или с дистрибутивом другой операционной системы, прибегают к использованию программы...
Файлы mdx чем открыть
MDX - это формат образов дисков, который был создан разработчиками программы DAEMON Tools. Это формат был создан в результате усовершенствования...
Adblock detector