Что представляет собой трехуровневая архитектура субд

Что представляет собой трехуровневая архитектура субд

Как уже указывалось, одним из важнейших аспектов развития СУБД стала идея отделения логической структуры БД и манипуляций данными, необходимых пользователям, от физического представления, требуемого компьютерным оборудованием. И идея эта должна быть заложена в фундамент, на котором будет строиться все здание информационной системы.

В этом подразделе будет рассмотрена та архитектура БД, которая уже четверть века официально признана и с достаточной точностью описывает большинство существующих систем. Однако это не означает, что современный рынок программных продуктов предлагает только-системы, строго следующие этой архитектуре как единственно возможной. Рассматривая конкретные системы управления данными, иногда можно заметить отсутствие поддержки некоторых аспектов данной архитектуры.

Одна и та же БД в зависимости от точки зрения может иметь различные уровни описания. По числу уровней описания данных, поддерживаемых СУБД, различают одно-, двух- и трехуровневые системы. В настоящее время чаще всего поддерживается трехуровневая архитектура описания БД, с тремя уровнями абстракции, на которых можно рассматривать базу данных. Такая архитектура включает:

внешний уровень, на котором пользователи воспринимают данные, где отдельные группы пользователей имеют свое представление (ПП) на базу данных;

внутренний уровень, на котором СУБД и операционная система воспринимают данные;

концептуальный уровень представления данных, предназначенный для отображения внешнего уровня на внутренний уровень, а также для обеспечения необходимой их независимости друг от друга; он связан с обобщенным представлением пользователей.

Данная архитектура СУБД вызревала не сразу, а постепенно, в течение ряда лет. Первые предложения поступили в 1971 году от рабочей группы CODASYL (Conference on Data Systems and Languages — Конференция по языкам и системам данных), которая обосновала необходимость использования двухуровневого подхода, построенного на основе выделения системного представления и пользовательских представлений.

В 1975 году Комитет планирования стандартов и норм SPARC (Standards Planning and Requirements Committee) Американского национального института стандартов ANSI (American National Standards Institute) предложил обобщенную структуру систем баз данных, признав необходимость использования трехуровневой архитектуры, которая и была официально признана в 1978 году.

Описание структуры данных на любом уровне называется схемой. Существует три различных типа схем базы данных, которые определяются в соответствии с уровнями абстракции трехуровневой архитектуры. На самом высоком уровне имеется несколько внешних схем или подсхем, которые соответствуют разным представлениям данных. На концептуальном уровне описание базы данных называют концептуальной схемой, а на самом низком уровне абстракции — внутренней схемой.

Основным назначением трехуровневой архитектуры является обеспечение независимости от данных. Суть этой независимости заключается в том, что изменения на нижних уровнях никак не влияют на верхние уровни. Различают два типа независимости от данных: логическую и физическую.

Рис. Трехуровневая архитектура СУБД

Логическая независимость от данных означает полную защищенность внешних схем от изменений, вносимых в концептуальную схему. Такие изменения концептуальной схемы, как добавление или удаление новых сущностей, атрибутов или связей, должны осуществляться без необходимости внесения изменений в уже существующие внешние схемы для других групп пользователей. Таким образом, тем группам пользователей, которых эти изменения не касаются, не потребуется вносить изменения в свои программы.

Физическая независимость от данных означает защищенность концептуальной схемы от изменений, вносимых во внутреннюю схему. Такие изменения внутренней схемы, как использование различных файловых систем или структур хранения, разных устройств хранения, модификация индексов или хеширование, должны осуществляться без необходимости внесения изменений в концептуальную или внешнюю схемы. Пользователем могут быть замечены изменения только в общей производительности системы. Далее рассмотрим каждый из трех названных уровней.

Трехуровневая архитектура БД. Определение и основные функции СУБД.

Прохождение пользовательского запроса к БД.

Система управления базами данных(СУБД) — совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.

Программы, с помощью которых пользователи работают с базой данных, называются приложениями. В общем случае с одной базой данных могут работать множество различных приложений.

Способы организации клиентского доступа к СУБД. Назначение, структура, функции ODBC.

По технологии обработки данных базы данных подразделяются на централизованные ираспределенные.

Централизованная база данных хранится в памяти одной вычислительной системы. Эта вычислительная система может быть мэйнфреймом — тогда доступ к ней организуется с использованием терминалов — или файловым сервером локальной сети ПК.

Читайте также:  Мой мир знакомства без регистрации бесплатно

Распределенная база данных состоит из нескольких, возможно, пересекающихся или даже дублирующих друг друга частей, которые хранятся в различных ЭВМ вычислительной сети. Работа с такой базой осуществляется с помощью системы управления распределенной базой данных (СУРБД).

По способу доступа к данным базы данных разделяются набазы данных с локальным доступом и базы данных с сетевым доступом.

Для всех современных баз данных можно организовать сетевой доступ с многопользовательским режимом работы.

Назначение ODBC выполняет массовую загрузку данных в таблицы базы данных с поддержкой ODBC. Назначение ODBC использует диспетчер соединений ODBC для подключения к источнику данных.

Назначение ODBC включает сопоставления между входными столбцами и столбцами в источнике данных назначения. Нет необходимости сопоставлять входные столбцы всем целевым столбцам, но в зависимости от свойств целевых столбцов могут возникать ошибки, если не задано сопоставление входных столбцов с целевыми столбцами. Например, если целевой столбец не допускает значений NULL, входной столбец должен быть ему сопоставлен. Кроме того, сопоставлены могут быть столбцы различных типов, однако если входные данные несовместимы по типу с данными в целевом столбце, то во время выполнения возникает ошибка. В зависимости от параметра поведения в случае ошибки, ошибка может быть пропущена, может быть вызван сбой, или строка может быть отправлена в вывод ошибок.

Назначение ODBC имеет один обычный вывод и один вывод ошибок.

Реляционная модель данных. Понятие реляционного отношения. Домен, кортеж, ключ.

Для манипулирования данными в реляционной модели используются два формальных аппарата:

реляционная алгебра, основанная на теории множеств;

реляционное исчисление, базирующееся на исчислении предикатов первого порядка.

Механизмы реляционной алгебры и реляционного исчисления эквивалентны, т.е. для любого допустимого выражения реляционной алгебры можно построить эквивалентную формулу реляционного исчисления и наоборот.

реляционными БД называется реляционно полным, если любой запрос, выражаемый с помощью одной операции реляционной алгебры или одной формулы реляционного исчисления, может быть выражен с помощью одного оператора этого языка.

Домен — это семантическое понятие. Домен можно рассматривать как подмножество значений некоторого типа данных имеющих определенный смысл. Домен характеризуется следующими свойствами:

· Домен имеет уникальное имя (в пределах базы данных).

· Домен определен на некотором простом типе данных или на другом домене.

· Домен может иметь некоторое логическое условие, позволяющее описать подмножество данных, допустимых для данного домена.

· Домен несет определенную смысловую нагрузку.

Типы реляционных отношений. Реляционная связь. Целостность

Реляционных данных.

По распространенности и популярности реляционные СУБД сегодня вне конкуренции. По сути, они фактически стали промышленным стандартом. В реляционной модели рассматриваются три аспекта данных – структура данных, целостность данных и обработка данных.
Структура данных реляционной модели:
Реляционной считается такая база данных, в которой все данные представлены для пользователя в виде прямоугольных таблиц значения данных, и все операции сводятся к манипуляциям с таблицами.
Таблица состоит из строк и столбцов и имеет имя, уникальное внутри базы данных, которое именуется, как отношение . Строка таблицы носит название картежа , а столбец – атрибута .
Количество кортежей называется кардинальным числом , а количество атрибутов – степенью отношения .
Первичный ключ является уникальным идентификатором и представляет собой такой столбец или комбинацию столбцов, что в любой момент времени не существует двух строк, содержащих одинаковое значение в этом столбце или комбинации столбцов.
Множество всех возможных значений (область определения) атрибута объекта называется доменом . Например, для атрибута ВЕС домен задается интервалом целых чисел, поскольку отрицательного веса не бывает.
Каждый столбец таблицы имеет имя, которое обычно записывается в верхней части таблицы. Оно должно быть уникальным в таблице, однако различные таблицы могут иметь столбцы с одинаковыми именами. Любая таблица должна иметь, по крайней мере, один столбец. Порядок следования столбцов в таблице определяется порядком следования их имен при ее создании. В отличие от столбцов, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.
Отношения обладают следующими важными свойствами:
в них нет одинаковых кортежей;
кортежи не упорядочены сверху вниз;
атрибуты не упорядочены слева на право;
все значения атомарны, т.е. отношения нормализированы.

Читайте также:  Как подключить принтер к ноутбуку видео

В реляционной модели данных есть два общих правила целостности. Эти два правила относятся к потенциальным ключам и внешним ключам . Выше рассматривался первичный ключ, который является частным случаем потенциального ключа. Пусть R – некоторое отношение. Тогда потенциальный ключ K для R — это подмножество множества атрибутов R, обладающее такими свойствами, как:
Уникальность – нет двух различных кортежей в отношении R с одинаковым значением K;
Неизбыточность – никакое из подмножеств K не обладает свойством уникальности.
Каждое отношение имеет, по крайней мере, один потенциальный ключ, так как не содержит одинаковых кортежей.
Потенциальные ключи имеют первостепенную важность для реляционных систем, так как единственный гарантируемый способ указать на какой – ни будь кортеж – это указать значение некоторого потенциального ключа.
Потенциальный ключ, имеющий более одного атрибута, называется составным , а состоящий из одного атрибута – простым .
Отношение может иметь более одного потенциального ключа. В этом случае один из потенциальных ключей выбирается в качестве первичного, а остальные потенциальные ключи, если они есть, называются альтернативными .

Работа с курсором

Курсор может находиться в открытом или закрытом состоянии.

После объявления курсор оказывается в закрытом состоянии.

Чтобы можно было работать с курсором, его следует открыть командой OPEN: OPEN имя_курсора .В результате открытия курсора создается таблица, которая его специфицирует, устанавливается упорядоченность строк и курсор располагается перед первой строкой таблицы.

Чтобы переместить курсор на необходимую строку таблицы и запомнить значения столбцов найденной строки, используется предложение FETCHсо следующим синтаксисом:

FETCH [[ориентация] FROM] имя_курсора INTO целевой_список

Ориентация определяет способ получения необходимой строки и принимает одно из следующих значений:

NEXT | PRIOR | FIRST | LAST |

Эти значения указывают, какая строка будет выбрана:

— NEXT — следующая; — PRIOR — предыдущая; — FIRST — первая;

— LAST — последняя; — ABSOLUTE значение — с указанным номером;

RELATIVE значение — отстоящая на указанное значение (оно может быть положительным и отрицательным).

При работе с триггерами.

Язык T-SQL-это собственный диалект языка структурированных запросов

применяемый в СУБД SQL Server. При подготовке данного выпуска СУБД SQL Server язык T-SQL был в значительной степени доработан, и в него добавлены многие новые программные конструкции. Кроме всего прочего,он был преобразован в язык, совместимый с общей средой выполненияоперационной системы Windows; короче говоря, начинаяс этого выпуска T-SQL стал одним из языков .NET.

Триггер — это специальный вид хранимой процедуры, которую SQL Server вызывает при выполнении операций модификации соответствующих таблиц.

Триггер автоматически активизируется при выполнении операции, с которой он связан.

Триггеры связываются с одной или несколькими операциями модификации над одной таблицей.

Триггер представляет собой весьма полезное и в то же время опасное средство. Так, при неправильной логике его работы можно легко уничтожить целую базу данных, поэтому триггеры необходимо очень тщательно отлаживать.

В отличие от обычной подпрограммы, триггер выполняется неявно в каждом случае возникновения триггерного события, к тому же он не имеет аргументов. Приведение его в действие иногда называют запуском триггера. С помощью триггеров достигаются следующие цели:

проверка корректности введенных данных и выполнение сложных ограничений целостности данных, которые трудно, если вообще возможно, поддерживать с помощью ограничений целостности, установленных для таблицы;

выдача предупреждений, напоминающих о необходимости выполнения некоторых действий при обновлении таблицы, реализованном определенным образом;

накопление аудиторской информации посредством фиксации сведений о внесенных изменениях и тех лицах, которые их выполнили;

Трехуровневая архитектура БД. Определение и основные функции СУБД.

Прохождение пользовательского запроса к БД.

Система управления базами данных(СУБД) — совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.

Программы, с помощью которых пользователи работают с базой данных, называются приложениями. В общем случае с одной базой данных могут работать множество различных приложений.

Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

В процессе научных исследований, посвященных тому, как именно должна быть устроена СУБД, предлагались различные способы реализации. Самым жизнеспособным из них оказалась предложенная американским комитетом по стандартизации ANSI (AmericanNationalStandardsInstitute) трехуровневая система организации БД, изображенная на рис. 1:

Читайте также:  Лучшие приложения для samsung galaxy watch

Рис. 1. Трехуровневая модель системы управления базой данных, предложенная ANSI

Архитектура включает три уровня: внутренний, концептуальный и внешний. В общих чертах они представляют собой следующее:

Внутренний — это уровень, наиболее близкий к физическому хранению, т.е. связанный со способами сохранения информации на физических устройствах хранения.

Внешний — наиболее близок к пользователям, т.е. он связан со способами представления данных для отдельных пользователей.

Концептуальный уровень — это промежуточный уровень между двумя первыми; другими словами, это центральное управляющее звено, где БД представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной БД.

1. Уровень внешних моделей — самый верхний уровень, где каждая модель имеет свое "видение" данных. Этот уровень определяет точку зрения на БД отдельных пользователей (приложений). Каждое приложение видит и обрабатывает только те данные, которые необходимы именно этому приложению. Например, система распределения работ использует сведения о квалификации сотрудника, но ее не интересуют сведения об окладе, домашнем адресе и телефоне сотрудника, и наоборот, именно эти сведения используются в подсистеме отдела кадров.

2. Концептуальный уровень — центральное управляющее звено, здесь база данных представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной базой данных. Фактически концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создавалась база данных. Как любая модель, концептуальная модель отражает только существенные, с точки зрения обработки, особенности объектов реального мира. Концептуальная схема — это определение концептуального представления. В большинстве существующих систем концептуальная схема в действительности представляет собой немного больше, чем простое объединение всех отдельных внешних схем с дополнительными средствами безопасности и правилами обеспечения целостности.

3. Внутреннее представление — это представление нижнего уровня всей БД. Внутреннее представление так же, как внешнее и концептуальное, не связанно с физическим уровнем. Это представление предполагает бесконечное линейное адресное пространство. Внутреннее представление описывается с помощью внутренней схемы, которая определяет не только различные типы хранимых записей, но также существующие индексы, способы представления хранимых полей, физическую последовательность хранимых записей и т.д.

Эта архитектура позволяет обеспечить логическую (между уровнями 1 и 2) и физическую (между уровнями 2 и 3) независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения без корректировки других приложений, работающих с этой же базой данных. Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с данной базой данных. Это именно то, чего не хватало при использовании файловых систем.

9. Реляционная модель базы данных.

Теоретической основой этой модели стала теория отношений, основу которой заложили два логика — американец Чарльз Содерс Пирс (1839-1914) и немец Эрнст Шредер (1841-1902). В руководствах по теории отношений было показано, что множество отношений замкнуто относительно некоторых специальных операций, то есть образует вместе с этими операциями абстрактную алгебру. Это важнейшее свойство отношений было использовано в реляционной модели для разработки языка манипулирования данными, связанного с исходной алгеброй. Американский математик Э. Ф. Кодд в 1970 году впервые сформулировал основные понятия и ограничения реляционной модели, ограничив набор операций в ней семью основными и одной дополнительной операцией.

Основной структурой данных в модели является отношение, именно поэтому модель получила название реляционной (от английского relation — отношение).

Любые данные, используемые в программировании, имеют свои типы данных.

Реляционная модель требует, чтобы типы используемых данных были простыми.

Для уточнения этого утверждения рассмотрим, какие вообще типы данных обычно рассматриваются в программировании. Как правило, типы данных делятся на три группы:

Простые типы данных.

Структурированные типы данных.

Ссылочные типы данных.

Простые, или атомарные, типы данных не обладают внутренней структурой. Данные такого типа называют скалярами. К простым типам данных относятся следующие типы: Логический, Строковый, Численный[2] .

Различные языки программирования могут расширять и уточнять этот список, добавляя такие типы как:

Ссылка на основную публикацию
Что мне задали завтра на русский
Проверка орфографии на 5-ege.ru (введите текст в форму ниже): Если нужно проверить пунктуацию, воспользуйтесь сервисом Проверка пунктуации онлайн. Наш сервис...
Чистка матрицы зеркального фотоаппарата
Нам доверяют сотрудники: Вопросы и предложения: info@fixit24.ru Адрес: г. Москва, м. Тверская, ул. Тверская, д. 20, 2 этаж, офис 204....
Чистка кэша на ноутбуке
Все, что находит отображение в браузере (музыка, картинки, видео) перед воспроизведением сохраняются на ваш ПК как временные файлы.Если их количество...
Что лучше газель некст или фиат дукато
На прошлой неделе Газель-Некст была признана лучшим автомобилем года в России. Эксперты коммерческого транспорта оценили ее в 2–3 раза выше,...
Adblock detector